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monitors for this contract.
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A STUDY OF CHARGED PARTICLE MOTION
IN MAGNETIC RADIATION SHIELDING FIELDS

By S. H. Levine and R. Lepper
Northrop Corporate Laboratories

SUMMARY

An experimental method has been effected for determining the
angular flux about a point dipole magnet produced by an incident
anisotropic charged particle flux. This information will be useful in
optimizing active shields with material shields. The experiment was
performed with the Magnetic Shield Simulator (MAGSIM), a device
used to determine the shape of shielded regions produced by externally
deflecting magnets. The MAGSIM was modified to provide more

accurate trajectory data for this experiment.

The experimental data involve two positions of the electron gun,
simulating the incident charged particle flux from two points in space
(six directions if symmetry is employed). One position is in the
equatorial plane of the magnet and the other is in a plane whose normal
is 45° to the equatorial plane. The data are recorded when the trajec-
tories score a fluorescent screen positioned about the point dipole.

The screen itself is located in a plane defined by the pole axis of the
magnet and the pivot point of the gun. Rotating the gun through all
possible directions at each position provide quantitative information
concerning the incident directions of the particle flux that intersect

the screen as well as the angular flux data.

A computer program has been written to reduce the data and
print out the results in a convenient format. The program consists of
two parts; the first determines pertinent parameters concerning the
trajectories as they score the screen and then punches the data needed
as input to the next phase. This first set of calculations is made to
assure the accuracy of the data before proceeding to the next part

wherein the angular flux is determined, Although the procedure



computes the angular flux about the point dipole associated with an
isotropic flux for future comparison with theoretical results, the

extension of this procedure to anisotropic flux and other magnets is obvious.

Considerable data are provided for the two source positions.
Extension of these me thods to provide complete coverage of all points

in space and other magnets is described in the conclusion.

INTRODUCTION

Magnetic shielding utilizes the concept that, in appropriate
magnetic fields, regions exist wherein charged particles with momenta
less than some given momentum cannot enter. This phenomenon
originally was studied by Stormer? in connection with various cosmic-
ray phenomenon in the geomagnetic field. He approximated the geomagnetic
field with a magnet dipole. Theoretical and experimental studies of
magnetic shielding in connection with the protection of manned and
unmanned spacecraft from damaging effects of incident charged
particles have been made in recent times with various systems (Levy, 2
Tooper, ® Bhattacharjie and Michael,* Levine and Lepper® by comput-
ing the totally forbidden volume. With encouraging results, the
criterion of totally forbidden volume has also been used to determine
feasibility of magnetic shielding systems, using superconducting
magnets, by comparing with size and weight using conventional mate-
rial shielding devices (Levy,? Bhattacharjie and Michael, % Tooper?9d),
One can also directly obtain, by experimentation, a sufficiently accurate
estimate of the totally forbidden volume (Levine and Lepper®). This
latter approach is considerably simpler than the theoretical approach
when analyzing shielding and totally forbidden volumes in complex
magnetic fields and has been used principally to study shields for
protecting against artificially injected electrons. Such active shields
can offer a tremendous mass advantage over material shields since
they are both effective in diverting the electron with its low mass and

in preventing the production of the highly penetrating bremsstrahlung.



The principal problems associated with active shields for
electrons are different from those for the high energy protons. In the
former, the major mass subsystem is the cryogenic cooling system
and its power supply whereas with the latter, the structural mass is
the heaviest component. The light mass of the electrons permits
effective shields to operate with low total currents so that the self-
induced forces on these magnets can be coped with using simple
structural supports. Corresponding magnets for protons require
currents approximately 50 times larger increasing the forces between
magnets by a factor of 2500. Consequently large massive structures

are needed to contain and support the superconductors.

The ampere-turn requirements for active shields used to protect
against high energy protons may be reduced by various methods.
Active shields designed to protect against the high energy protons in the
Van Allen Belt can take advantage of the proton anisotropy and the
earth's magnetic field. The spiralling motion of these protons about
the earth's magnetic field, together with the forced orientation of the
magnets, offer an advantage to active shields. A single current loop
shield design automatically orients itself to provide protective regions
in the center of the shield which greatly reduces total current require-
ments’. The region within the center of the single loop is totally forbid-
den to protons having momentum below the design value. Indeed, to
date all active shields have been designed to provide totally forbidden
volumes. The possibility of extending the vehicle volume into the
partially shielded region will reduce the total weight of the active
shield system for a given vehicle. A partially shielded region has the
characteristic feature that charged particles having a specified set of
initial directions of motion at large distances are forbidden from
entering it. Theoretical analysis of partial shielding in the general
case is a difficult problem, requiring extensive numerical computation,
even in the point dipole field, since a knowledge of the third field
integral of motion is required. However, under suitable initial condi-
tions, it has been recently found that theoretical estimates of the

effects of partial shielding can be obtained by using Liouvilles' theorem.



This was first achieved by Prescott, Urban, and Shelton® who showed
that, for spatially uniform and isotropic particle distribution at large
distances, application of I iouvilles' theorem to cylindrically symmetric
magnetic shields yields simple analytic criteria for deriving quan-

titative estimates of partial shielding.

Further improvement in active shield designs may be attained
by determining the angular distribution of the proton flux at the surface
of the vehicle, and integrating material shields to provide optimum

protection,

The problem of estimating the angular distribution and the
partial shielding in a given magnetic field has no simple theoretical
solution to date. The theoretical approach would basically be to
numerically integrate the equations of motion in order to obtain the
distribution of the charged particles. This is a task of considerable
magnitude. On the other hand recent advances in experimental
techniques using special phosphorescent screens together with gas
excitation has provided the possibility of obtaining the angular distribu-
tion. The purpose of this program has been to effect these techniques

using a point dipole magnet.

In the next section, the work of Stormer® and Prescott, et al,
is reviewed for reference and underst anding of the experiments which
are all performed utilizing the Magnetic Shield Simulator (MAGSIM).
This is a device which has been modified in this program to improve
its accuracy and permit taking the appropriate data. The MAGSIM,
including the modifications and the expe rimental technique, is

described in the third section.

In the fourth section, the data analysis and results are presented,
Included in this section is a description of a FORTRAN computer
program employed in the data reduction and analysis. The conclusions

are given in the final section.



ANALYTICAL DISCUSSION

We shall very briefly consider the motion of a charged particle
in an axially symmetric static magnetic field from shielding point of
view without any derivations. The notation followed is the same as
given by E. W. Urban.® In an axially symmetric magnetic field
described by the vector potential, A = A¢ 8, where ¢ is the azimuthal

angle about the axis of symmetry, the equations of motion are

n(B-he=-33 Qs ()
n(P8+208) = -4 2 o (2)

together with two first integrals of motion

n(s® + 0262) =1 - 2 (3)
-\Vn psin$:p—§%e—+§'A¢:Q, (4)

where n = Cest/vg » Cgt being the Stormer distance. For a magnetic

dipole,

> Ay = sina/pR (5)
Analysis by Stormer for the magnetic dipole case has shown the
existence of inner and outer allowed regions and inner and outer forbid-
den regions corresponding to different values of ; and Q. The actual
trajectory of a particular particle can be determined only by numerical
integration of the equations of motion, but the trajectory, however
complicated, will remain in the outer allowed region defined by the ;
value of the particle. Stormer showed, in addition, that the particular
inner forbidden region outlined by the curve Q = 1 which occurs at

y = -1.00 gives the totally shielded region. Considering magnetic
systems more complex than a pure dipole, Urban proved that the totally

shielded region corresponds to the critical value % of 5 associated



with a saddle point in the Q surface at Q = - 1. Denoting the critical
saddle point values by —'}:c , pc and Q., Urban established the following

equations for determining them:

3Q
30 -0
1 230 _
P 38 -0 (6)
Q=-1
2
1 [ 220 1 320 2 Q 0
TRELED 7 Enp F 6 >

at

The active shield is designed to provide a totally forbidden region
to enclose the vehicle. Due to the divergence characteristics of the
magnetic field, the protected region for an incident isotropic flux is
always in the shape of a toroid. The mass of the active shield per
unit of protective volume is then determined for the configuration and
compared to a material shield mass based on the same vehicle volume.
This places an encumbrance on the active shield since only one trajec-
tory is needed to define the completely protected volume. The feasibil-
ity of magnetic shielding would be further enhanced if, rather than
considering totally shielded region, one could take into account the
additional shielding due to forbidden regions corresponding to the
actual ; values of the incident charged particles against which shield-
ing is to be effected. These regions are conveniently referred to as
"partially" shielded regions and have the characteristic feature that
charged particles having a specified set of initial directions of motion
at large distances are forbidden from entering these regions (and also
having momenta less than some given momentum). A significant
contribution to this problem has been made by Prescott, Urban, and
Shelton.® They have obtained the total particle flux & (r) through a

point located by the position vector r in a general axially symmetric



magnetic field incident by a spatially symmetric and isotropic charged

particle flux at infinity by the application of Liouville's theorem.

Their result is

d(r) =0 if Q. 210

1.0 if -1.0 or if
1ch or i (7

3

3P

:-l—igc—if-1<Qc<land—aa—%s<0,

-l<Qc<1and

where

Partial shielding analyses circumvent individual trajectory
analysis and thus do not incorporate or evolve the angular distribution
of the flux impinging on the surface of the vehicle. A determination
of the angular flux, & (r, ) a O, would permit optimizing the active
shield together with a material shield, the latter being composed of
the required structure and system equipment plus some additional
material for complementing weakly shielded regions. Unfortunately
numerical analysis of the trajectories required to provide this detailed
information is far too costly and time consuming. Thus an experimental

approach to attain these type data is of considerable significance to

active shields.

The MAGSIM, described briefly in the next section, is utilized
to obtain such data. Here the data are taken for individual trajectories
programmed to simulate a distributed source on a spherical surface.
Consequently it is necessary to transform the distributed source into
an equivalent flux density. An isotropic source, ®(Py, ©), is sim-
ulated by homogeneously distributing the source over a sphere of

radius P, according to the relation!

S(Py, Q) = 1l (P, Q), (8)

where



u =cos (85 + 90°) (9)

Since the magnitude of the source strength is arbitrarly provided,

5Py, ©) = Cl ), (10)

we normalize the flux so that

4T
[ alp,,0)d0=1. (11)
Yo

Substituting eqs. 8 and 10 into 11 and integrating, we obtain

C =

y (12)

Thus the source intensity, A S, representing the number of particles

moving in a solid angle AOg crossing area AA, is

AS = Q(R, 0) AOg AA,
or
- dul
AS=—3— £0g AA. (13)

These equations provide the basis for analyzing the data taken
with the MAGSIM and are used to obtain the angular flux distribution
about the magnet. The process of determining these parameters from
the data is best understood by referring to the experimental setup as

described in the next section.,

Equation (13) corresponds to an isotropic flux at infinity. An
anisotropic flux can be simulated by inserting a resulting function,

W(.Og), into equation (13) to define the anisotropy as shown in equation
(14).

AS =

W) |pl
m

T AQg AA (14)



EXPERIMENTAL PROCEDURE

Stormer was the first to reduce the equations of motion, eq. 1
through 5, to a nondimensional form by introducing a new unit of
length, Cgy, referred to as the Stormer radius. This remarkable
property of the equation of motion permits experiments to be performed
with scaled-down models and low energy charged particles to provide
accurate data for the larger magnets and higher energy charged particles.
Scaled down experiments have been performed by Malmfors!? to obtain
information on cosmic ray trajectories using a point dipole magnet to
simulate the earth's magnetic field and electrons to simulate the cosmic
rays. Electron trajectories represent the motion of a positive charge

in a cartesian coordinate system if the X axis is reversed.

The original devices employed to study the trajectories of high
energy particles entering the earth's magnetosphere were called
Stormertrons. The device we have developed at Northrop is a
Stormertron that has been modified to permit studying in a quantitative
fashion the shielded regions created by magnets. For this reason, the
device has been called the MAGSIM. In order to obtain accurate
trajectory information for determining the angular flux distribution
about a dipole magnet for this program, the precision of the MAGSIM

has been improved further.

Magnetic Shield Simulator

The magnetic shield simulator, & Figure 1, consists essentially
of a vacuum chamber, an electron gun, power supplies, degaussing
coils, and the magnets with their supporting structure. The vacuum
chamber is an aluminum coated steel tank, 5 ft in diameter and 10 ft
in length, and capable of attaining pressures in the range of 1 x 10-6
Torr. Large coils have been properly placed in the chamber to reduce
the earth's magnetic field approximately one order of ma gnitude, which
appears to be adequate. The chamber is equipped with ports through
which cameras are used to record the phenomena observed, a large

observation window being available in the chamber door assembly,
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The hard vacuum requirement of the chamber is necessitated by the
fact that the cathode of the electron gsource, a commercially available
electron gun, must be processed in the chamber to assure adequate

emission.

The magnet configuration is suspended from the top center of
the chamber on a rigid structure which allows limited reorientation.
Although we employed only a single-point dipole magnet in these
experiments, Figure 1 shows a more complex arrangement of two such
point dipoles in a general example. 13 A motor-driven pulley permits
rotation of the system to present various aspects to the electron source.
The center of the system is located at a point normal to each of the

two data recording cameras,

Two cameras are located at ports perpendicular to each other as
shown in Figure 1. The cameras and film have been selected so that
adequate pictures can be obtained by backfilling the tank with argon
to a pressure of 1 to 3 x10™ Torr. The argon atmosphere is ionized
by the electron collisons. A light-blue fluorescence, rapidly photo-
graphed, defines the path of the electron streams. A grid system
which allows isolating the forbidden area in any defined plane has been
developed. For this the 1/2 in. mesh grid was established as optimum:;
the 1-in. grid did not give the detail desired and the 1/4 in. and smaller
mesh sizes appeared to have an effect on the electron beam. The grid
wires are coated with P-1 phosphor powder which fluoresces quite
brilliantly under electron bombardment. Measurement and scaling of
the photographs is accomplished by the use of an opaque projector which
can be set to display the photographed objects at actual size, thus
eliminating the necessity of scaling the data which improves the accuracy

of the measurements.

A four-element power supply is utilized for the electron gun.
Each element of the supply is a simple transformer-rectifier circuit
with a 500-V, 40 mA capability. The output voltage is controlled by
the use of a variac transformer at the input of each element and the

main output is monitored by a digital voltmeter. With this supply it

11



was found that the beam (discernable on the grid) could be maintained
to vacuum presssures in the 10-® Torr range with no difficulty. In
addition to being able to rotate the magnet structure about its vertical
axis to present various aspects of the magnet system to the electron

source, the electron gun may also be remotely reoriented.

A new gun mount was constructed to provide accurate directional
information regarding the trajectory exiting fromthe gun., The mount
consists of a gimbal mechanism which is free to independently rotate
about either of two axes. The gun may be swiveled both vertically and
horizontally about one point so that the beam comes from the same point
as the beam direction is changed. Each gimbal is connected to multi-

turn potentiometer to provide position readout on a digital voltmeter.

The gimbal system is designed to read out the (9, ¢) angles of
spherical coordinates directly. Figure 2 shows this gun mount being
calibrated about both angles of deflection and Figures 3 and 4 show the

resultant calibration curves appropriately labeled.

For the data to be reliable, the earth's magnetic field inside
the vacuum chamber must be made sufficiently small so as not to
perturb the beam trajectory. Assurance that this condition was met
at all times was made by remotely directing the beam at several points
about the magnet (with zero current) toward fluorescent cross wires
as shown in Figure 5, for which exact angles from gun pivot point are
known. Precision 6-minute bubble levels were utilized to check the
mount in both axes. Correlation between readout angle and actual
angle to several of the cross wires was made prior to each day's run.
An example of such data is shown in Table 1. It was impossible to
align the gimbal system to give the exact angle; some offset in the zero
position exists which remains constant for all measurements taken over
an extended period of time (~ 4 weeks for the first setup). Thus we

determine eg and ¢g from the relations

8

It

g=Co+ Cy V(I) + D,
(15)

®

g Bo + By H(I) + D,

12



Figure 2.

VERTICAL PLANE

HORIZONTAL PLANE

Calibration of electron gun mount
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TABLE 1,

Point on
Figure 5

A

5 B & B w B @ B o

.
=]

Averaging B, C, D, and E gives D, = 3.1

Angle as
Measured using

Geometric Dimensions

55.150
66. 75
76. 80
96.10
107.10
117.90
104.9

116.7

Angle as
Measured
with Gun

60. 25
69. 82
80.23
99.07
110.08
119.02
11 4. 47

11 6.66

Averaging I and J gives D, = - 0. 22°

17
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Diff,

3.43
2.97

2.98

.04



where C,, Cy By and B, are constants established from the calibration
curves of Figure 3 and V(I) and H(I) are the digital voltmeter readings.
The other constants D, and D, account for the offset in alignment.
Initially, two slopes were required to fit the calibration data so that

the computer program used to determine ¢ and 8 provides for an extra
set of constants (see Appendix A). However, the final system which
contains linear potentiometers produces a straight line curve with one

slope.

When the point dipole is energized, it sets up a magnetic field
which images in the steel vacuum chamber. Consequently, measure-
ments of the magnetic field were made to observe the point dipole
behavior of the magnet for these experiments and to provide a calibra-
tion of the point dipole, i.e., the magnetic field produced by a point

dipole magnet should follow a 1/r® relationship.

The point dipole magnet was mounted in the center of the
vacuum tank with its center at the same height as the pivot point of
the gun mount's gimbal system and with its dipole axis perpendicular
to the longitudinal axis of the tank as shown in Figure 6. The magnetic
field measured along the south pole and north pole axis with 1. 2 A in
the magnet are shown in Figures 7 and 8 respectively, together with a
curve of the calculated value. The dipole moment, M, used to compute

the magnetic field was

M=24.8i A-m? (16)

where i is the dipole current in amperes (i = 1. 2 A for these figures).
This is to be compared with M = 24, 7 i reported in reference 6.
Magnetic field measurements along the X axis in the direction of the

gun and along the Y axis in the negative (down) direction are given in
Figures 9 and 10, The position of the point dipole was determined rather
precisely (+ 0.1 cm), utilizing the symmetrical nature of the magnetic
field and was found to lie on the pole axis displaced 0. 35 cm from the

geometric center toward the north pole.

18
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Figure 7. Dipole magnetic field in vacuum chamber
from south pole to side of chamber.
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Figure 8. Dipole magnetic field in vacuum chamber

from north pole to side of chamber.
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Figure 9. Dipole magnetic field in vacuum chamber

from rear surface of dipole to muzzle
of electron gun.

22



Field in Gauss

102 -

107 +—

Theoretical Curve
M= amp -m

1072
10° 10t 10°
r in inches
Figure 10. Dipole magnetic field in vacuum chamber

from bottom surface of dipole to bottom
of chamber.
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It can be observed that in all cases the magnetic field drops
below the anticipated value as the tank walls are approached; however,
these regions are sufficiently remote from the magnet that when a
charged particle enters this region it will continue to infinity, This
is true except for when the beam first leaves the gun until it is within
approximately 40 to 45 cm of the center of the dipole magnet. This
should have only a slight effect on the assigned incident angular
parameters, an effect which can be determined theoretically or exper-

imentally.*

In addition to the gun angular read out being connected to a digital
voltmeter, the magnet current power supply voltage was also monitored

by the digital voltmeter.

Both the screen and gas excitation were used to completely define
the trajectory parameters at the point where the trajectory intersected
the screen. In this procedure three photographs were taken to obtain
a complete set of data for one trajectory. The side and bottom cameras
are used simultaneously to obtain pictures of the trajectory when gas
is in the chamber from two orthogonal directions as shown in Figurell.
Another very short time exposure picture is taken with the bottom
camera to help identify more precisely where the most intensive part
of the beam intersected the screen, also shown in Figurell. A photo-
graph of the screen with lights on as seen by the bottom camera is
included in Figure 11, since this picture is needed as a reference for
all of the data taken with the dipole in its present orientation, i.e.,

8o = 90°.

A current of 1.2 A was used in all of the point dipole experiments
since this is the lowest current for which the forbidden region is just
visible outside of the sphere when the electron beam voltage is 350 V.,
An electron beam voltage of V = 350 V was selected as optimum to
minimize the effect of the residual field and still permit operating
with a relatively low current in the magnet. Even atl.2 A in the dipole
magnet, the magnet becomes excessively hot after operating for a few
hours continuously, The Stormer radius computed for the 350 electron

volts and 1. 2 A in the magnet is 21. 73 cm (8. 56 in. ). According to

24
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Prescott et al, ® the flux intensity outside a Stormer unit should be
unaffected by the magnet if the incident source at infinity is isotropic
and spatially uniform, neglecting the shadow effect. For this reason
a new 22- by 24-inch fluorescent screen was used which is well over
a Stormer unit (su) in dimension and almost completely covers the
field of view of the camera. Very small pin-lights were placed in
the screen to key the data from one picture to another and to aid in
reducing the data. An additional pair of pin lights are connected

into the magnet power system to identify the south pole of the magnet;

an extremely helpful aid in keeping the data in order.

As a final check on the system prior to its use each day, the gun
was set at a predetermined orientation, by use of the voltage indicators,
and test pictures taken. These pictures were taken each day under as
near identical conditions as possible and then compared to the previous
test pictures for reproducibility. Both the configuration of the trajectory
and the point of impact on the screen were compared. Any change in
these pictures from the previous test shots was cause for a complete
review of the system including dipole current, compensating coil
currents, gun orientation, gun electrical configuration, etc. since all
of these contributed to the trajectory configuration. When no misadjust-
ment was determined to be the cause of the variation of the trajectory

the system was completely recalibrated.
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DATA ANALYSIS AND RESULTS

Data were taken with the screen in a plane parallel to the floor
and oriented at two angles, 8 = 90° and 8° = 45° to represent two
incident directions of the charged particle flux. The referenced data
are the two-gun angle directions, eg and ‘Dg’ and the three sets of
pictures for each trajectory. A few pictures with lights on (See Figure
11) were taken for each of the two screen angles, 8, as a reference
for properly defining the XZ axis on the data pictures. To expedite
the experiment and conserve film, a scan was made with the gun in
the eg bg plane to identify the angular positions of the gun that produce
trajectories which either score the screen or the point dipole. Figures
12 and 13 show such scan for the § equal 90° and 45° screen orientations

respectively.

The data pictures permit determining, by two independent methods,
the parameter Q, = cos g, at the point of the trajectory where it
intersects the screen. The two separate methods for computing Q, at
the screen provide an excellent method for validating the data and
insuring the accuracy of the procedure. The first method utilizes the
trajectory traces, recorded by the two cameras, to construct the
velocity vector. Each photograph records a trace of the trajectory as
it passes through the screen, and the tangents to these traces at the
point of intersection with the screen provide sufficient information to

construct v and consequently determine Q,.

Since Q, = cos oy which, according to our nomenclature, is

vy/v where

(17)
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then

-1/2
2 2
e A 08)
vy vy
The components “X and Yz are determined from the photographs of the
V. A\
y y
trajectory. It is more convenient to write eq. 18 as
> 2] -1/2
v, = Q= 1|1+ Vx + Vz . Vx ] s (19)
prasf e

since Vx/vy and v,/v, are closer to the measured quantities.

The two cameras are located on axes perpendicular to the line,
AA’, of Figure 6. One camera is directly beneath the screen (View 1)
and the other views the edge of the screen (View 2). The lower camera,
View 1, records the trace in the XZ plane as long as the screen remains
in the horizontal plane. Since this was the case for the two screen

positions (8 = 45° and 6= 900) used in this experiment, it was possible

to measure both tan 8, OTF tan ez'x' where

tan 8,4 = v, /vy (20)
and

tan@,’ ' = v, v, (21)

as shown in Figure 14. (The prime refers to the axes for the 5= 90°

which are also the axes associated with the camera. )

The side camera (View 2) data are easily interpreted for both

cases if

v, ' (22)

2 S
’caneyx = v x

y

is used together with tan 8,/ ’; otherwise

tan eyx = vy/vx (23)
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must be derived. The bottom view permits determining either 8, or
8z 'x ' since in this plane the axes can be projected on the screen; however,

the side view measures vy /v’ only,

It is best to use measured values of the angles @, ‘! and e ! « for
determining the best value of Q,, since errors are m1n1mized Tan 6 yx
can be derived using standard vector analysis procedures relevant to

rotating the axes of the coordinate system.

Now, before rotating the axes,
v=i'v '+ji’'v. +k v ', (24)
and after rotation eq. 17 represents v; that is
x_/:i_vx+_j_vy+l<_vz.

Since the rotation is about the y axis through an angle 8/, j = j ’ and

vy = vy ’. Therefore

tan exy = tan exy’: Vx = _V_x, (25)
VY VY
r_ s, — 31, s,
Vx TLCvEAcive+itskovy

_ ’ . ’
= V4 COs 8 + v, sin 8

= vy cos (90-9) + v, cos B,

where § = 45°, Solving for vx/vy, we find

T ctn Byy
_Y " Cos (90-8) + tan 8,%x COs 8
or
ctng__’
Vx  _ rx . (26)
W cos 45 (1 + tan 9, )

A singularity occurs at tan 6,x = - 1. 0, introducing large errors into
the results; therefore, this procedure is not utilized. That is, eqs. 21
and 22 are used in eq. 19 to determine Vy-
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The second method computes Q, for the point dipole using eq. 4;

Q =sinq s 2 v 27
! P, p, sinp, (27)

where P, and 8, are the cylindrical coordinates for the position of the
trajectory at the screen. The value for y is obtained from the electron

gun's (po, 8o) and eg angular positions, Rearranging eq. 27, we obtain

_ i sin® a4
by :%2_ Q, {cos ao sin 84 - By :I , (28)

where '90 and 8, now refer to the trajectory coordinates at the electron

gun, i.e., pivot point for the gimbals; using the right-hand coordinate system,

o = 180 - g, (29)

Reversing the direction of the point dipole gives (see eq. 14)

Ofo - eg- (30)

A computer program was written in FORTRAN 4 to determine
Q, by both methods. The program prints out vy and Q, where the Vy
refers to eq. 19 and Q, refers to eq. 27. The measured raw data for
each trajectory which includes the voltages corresponding to the
horizontal and vertical gun angles (Q)g and eg respectively) and the
ry, 8,,0y% ", 8,'y’, and 8, are recorded on IBM cards together with
the number assigned to the trajectory. The computer program also
prints out other parameters convenient to study the major aspects of
this phase of the data analysis. It is particularly useful to identify
errors in the data or the analysis itself. Additionally, the computer
program punches out a new set of data cards to be used with the next
phase of the data analysis. These cards contain trajectory data to compute
the angular flux ¢(r €£)d ¢ , a computation performed by the second
phase of the computer program. A complete description of the

computer program is described in the appendix.

The data is taken by moving the gun in angular steps to trace
out a square in the eg ty plane as shown in Figures 15 and 16 for the

8 = 90° and 45° dipole configurations respectively. This permits
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assigning a solid angle, A ‘Og » with each set of four trajectories,

so that the source, AS of equation (13), can be evaluated. Figures 15
and 16 contain all trajectories that score the screen. Each trajectory
has a 8g and a corresponding value of | ! as defined in equation (9).
The |y | for the solid angle and source is determined from the average
of the four eg's. The source AS is assumed to correspond to the
angular flux at &, moving in the direction f from the area AA as
illustrated in Figure 17, The AA is thus the area associated with this
source for which it is assumed that the angular flux produced about

the point dipole by this source is representative over all points of the

area AA.

AA = 0,7 sin 8, A 8, A¢g (31)

where A6, and A g, define the size of AA.

Before proceeding to determine the angular flux distribution about
the point dipole, it is essential to compute vy and Q, and compare
their values for each trajectory. We have selected a representative
set of trajectories that will be used throughout this report to compute
various parameters and the angular flux distribution about the point
dipole. In Table 2 are given the data corresponding to § = 90°. These
trajectories are enclosed in the rectangular areas outlined by either
dotted or solid lines in Figure 14. It can be observed that we have
selected certain portions of the total available solid angle region where-

in trajectories intersect the screen to cover a wide range range of

(mg, 8

the values of Q, and v

) points. In all cases, there is reasonable agreement between
y* We have selected § = 45° data for which the
selected trajectories are outlined similarly in Figure 15 and these data
are given in Table 3. In this case not all of the trajectories give good

agreement between C, and v This might be expected where small

errors in data produce largeyerrors in cos ¢, as is the case when ¥
is very small in magnitude. Also trajectories that come close to the
chamber walls, where the nondipole beh avior of the magnet exists,
would probably cause discrepancies. This is discussed further in the

conclusion section.

36



&

Q

(o]

@

Figure 17,

Source angular flux from area, dA.

37




0°L8- ¢19°0 6°91 1°0¢ 8956°0 68€6°0 10-39L¢°G~ 8°¢C01 G*06 2601

£°98- 929°0 g*es €T en £609°0 $LTL*0 10-9889°6- 1°%01 §*06 1601
9°Z11~ 129°0 6°SY 6°S9 2969°0 180%°0 10-3889°G- 1°%01 888 8801
g°18- 809°0 0°92 1°2e L868°0 8926°0 10-39£2°6~ 8°zo01 888 L80T
0°58- £99°0 €°8¢ 6°8C 1088°0 €5L8°0 10-862G "~ z*001 L°16 6901
86~ £99°0 0°L2 8°87 0168°0 %9L8°0 108526 4= Z2°001 0°06 9901
0°z8- zLO0°T 1°9L 9*69 80%Z*0 18%€°0 10-a%2L°C~ Z°v6 9°%6 SE0T
$* 8- 868°0 9°69 0°09 68%€°0 900S *0 10-3€8T° €~ 1°96 L°T6 8201
$°06- %91°1 8°9¢L vl €822°0 L692°0 10-39ZL° 2= 246 L°06 9z0T
0°06- 868°0 $°59 7°6S L9190 £60S*0 10~-3€8C €~ 1°96 L*06 $z0T
§°g6- %€6°0 2°69 £°%9 165€°0 TvEH°0 10-3€82°€- 1°96 888 zeot
0°%6- 691°1 €°9¢L 8" yL 89€Z°0 8292°0 10-a%ZL°C~ z°v6 8°88 1201
9°86- 8L1°1 S°6L 8*cL 0Z81°0 97T *0 T0-avzLee- Z°v6 8°98 0z01
8°6z- 198°0 1°9%1 0°S01 00€8°0- 8867 °0- 10-3886°1- 8'16 €*zot L66
8°4%9- L81°1 L°08 8°8L 11910 E%61°0 10-3€0% - 2°€6 €°201 966
9° 1L~ T AN L°08 7°8L %291°0 8002 *0 10-3€0%°¢- z°¢6 #°001 $66
v°TT- €56°0 0°081 Gzl 0000°1- §519°0- 10-9886°1- 8°16 v°86 £66
9°9L- 082°1 6°8L 0°8L ZE61°0 080Z *0 10-3€0%° - 2 €6 v°86 66
0*6L- 192°1 €18 8°9L 8IST°0 682Z°0 10-3€0% ¢~ 2°¢6 8°96 166
0*%Z- §ST°T 8°GST 8°Z21 8116°0- ST%S°0- 109886 1~ 8'16 8°96 066
S HST- %91°1 8°801 1°0€1 zzeeto- 9%%9° 0= 10-321%°2~ z°¢6 7°68 €86
S°6GT- 02Z°1 T°6€1 T°%€T 65GL°0- $569°0- 10-3886°1- 8'16 v°€8 786
9°6ST- 0€6°0 0°8€1 G gyl €€YL 0" 8€28°0- 10-3886°1- 8'16 §*18 186
9°661- 916°0 1°%11 S 191 160%°0" €28L°0- 10-921%° 2~ 2°¢6 g*€8 9L6
€°LST~ ¥28°0 6°%CT $* 191 8TL5° 0" $8%6°0" 10-921%°Z~ z°¢6 G*18 L6
1°L61- S18°0 8°8y1 €651 LSS58 0" 25€6°0- 10-321%°2~ 2°€6 6°6L zL6
£°8GT- 198°0 LU€ST 6° 191 9968° 0~ £98L°0- 10-9966° 1= 8*16 L 6L 0L6
Lo€ST- z%8°0 6°L21 9*0€T L919°0- %069° 0= 10-36L£°C- 1°€6 8°LL 896
§°8G1- ¥88°0 9°6€T 8°6€1 €19L°0- SE9L* 0~ 10739661~ 816 8*LL £96
$*96T1~ 6£6°0 0°T€T 6°L21 §959°0- Z719°0- 10-3966°1- 8'16 8°SL 996
y°16T- 116°0 0°L11 0°121 L%S%* 0= €715 °0- 10-36L€°2- 1°¢6 gL $96
g ‘g ep o £, 0 son A 3, 8y -

006 =€ OL ONIONOJSTYYOD VIVA AMOLDALVYEL ‘2 ATV

38



[ ] L ]
N OV O
] ]

MO —~0O0OCOO0O
L]

1°46-

L19°0
¢19°0
189°0
989°0
1€9°0
6€9°0
60L°0
60L°0
869°0
069°0
GGL®0
8£8°0
%¢8°0
6€6°0
L%8°0
066°0
8¢8°0
%(8°0
916°0
LS6°0
€00°1
868°0
0%0°1
£96°0
8T1°1
9€0°1
€81°1
60T°1
8€C°1
9¢0°1
6.8°0

€° 991
A
6°€L1
£°%91
0°081
9°6L1
6°¢C1
9°71
6°LY
%°09
0°9g
6°69
0°L9
1°9L
6°%9
9°9L
L°cs
£°6S
¢ €9
9°19
1°49
L°€9
7°0L
2 %9
7°cL
9°89
LLL
€69
8°LL
G°801
1°%9

2o

097 =6 OL ONIANOdSTYIOD VILVA AYOLDALVEL

L°6TT
[N
[N/
9°¢Yy
1°¢€€T
2 1¢el
%
1°%9

.0-

‘0-
[ Y4
VAR
VAR
L*6S
L°1Y
£°19
8°L¢
[ARX
L LY
¢tes
0°LS
L9
L°19
9°¢cS
2°99
8°8S
0°69
£°%9
0°1L
1°¢68
0°L8

1%]

12€8°0-
81%8°0~
7%66° 0~
6296°0~
0000° 1~
0000°1-
Lwl6°0
LGL6°0
8049°0
£E6h"0
¢6S5°0
(A2 30
L06€°0
AV TR
I%¢%°0
61€2°0
%509°0
¢116°0
T0S%°0
¢9L%°0
868€°0
Levy°0
z29€€°0
0sew*0
120€°0
LG9¢€°0
1€12°0
106€°0
801¢°0
691¢°0-
ELEY O

LN

8h6%° 0~
£L69°0-
6%0L°0
6669°0
9€89°0-
$869°0-
7628°0
€9€%°0
0000°1
0000°1
¢506°0
8965 °0
0LzL o0
79050
79%L°0
664%°0
#064°0
68¢L°0
#€49°0
€e€19°0
07%6°0
901L°0
6ELY"0
§409°0
T70%°0
7L16°0
186€°0
8BEER°0
192¢€°0
9680°0
1¢50°0

0 son

Zo-q18%v ¢~
c0-3q1I8% ¢~
£€0-9496°¢
€0-3L96°¢
¢0-gisyw° e~
c0-q18%v°¢C-
£0-3L96°¢
£€0-3.96°¢
10-361¢°¢~
10-39L6°1-
10-3¢1¢°¢~
10~9¢¢L° 1~
10-3166° 1~
10-3¢¢L 1~
10-3166° 1~
T0-d9¢eL 1~
10-3€s¢°¢-
10-3e5¢° ¢~
10-g€5¢ ¢~
10-3€5¢°¢C-
10-de6¢°¢~
10-3900°¢~
T0-309L°1-
10-3900°¢~
10-909L° 1~
T0-3900°¢-
10-309L°1-
10-3900°¢~
10-309L° 1~
C0=dL6T° -
¢0-481€° 1~

A

SOOI W IN WY O O

e & @& & 5 & o & o s o L d
ST I I NN O ONMNO OSSN
oooooxcnoo~oc«ooomooooooooooowwwoooooooow

¢ o o o o o o
NOFTOFTOFTOFT OSSN

MOANONOTONRONNNNNMNODIMNG I~
Ll

ol 4]
a

e dTdV.L

e e s o
ST TS

C"ONONONON OO G0 QO QO M~ QO N QO
*® o o e s s o o

.
DR A AN O H NN NN OO DO 00NN NN
OV~ P00 0 0 0 ™~ 00 00 00WaWWWMDWOVDNDRDNNNORN

.
U ITe T LN LN

NN IFTdToonononFTFTonnmo o
L]

0]
G

70L1
L6991
£0LT
B8GI91
L691

9491

9691
GL91
8191
L191
L091
9191
9091
6091
€661
651
{861
A
7961
LSST
1661
TL61
0461
€961
961
9661
66aT
06¢1
64961
AL
T9%1

39



Some trajectories pass through the screen more than once and
the data for the second screen intersection are listed with the trajectory
number prefixed with a 9. The data for these are given in Table 4
where most of these trajectories come from 8 = 90° data. Almost all
of the data taken with the dipole oriented in the 90° direction gave
excellent agreement between Q, and Vy values. This is true not only
for the above listed trajectories but also when the poles are reversed
for which data are presented in Table 5. These include trajectories
from 1278 to 1293. A minus prefix is included with several trajectories
to study the effect of displacing the measured point to a new (r; §,)
position on the screen. In many cases as the gun is rotated through
different small increments of the (¢g, 62) angles, the points of the
trajectory intersection on the screen trace out a smooth curve (dotted line)
as shown in Figure 18. When some of the (r,8,) points lie off this curve,
the point corresponding to a position on the curve is also utilized to
compute trajectory data for comparison and this trajectory is designated
with a minus prefix. In general, the change produced in Q, is very small
so that the r, 9, points could correspond to a point on the smooth curve.
Once the data has been shown to give agreement, it is then used to

compute the angular flux.

The angular or vector flux &(r, Q) AQ at r is by definition

the particle intensity, crossing a unit area perpendicular to €, having
direction @ and falling within the solid angle A . The four trajectories
defining the source AS intersect the screen at four separate points

(P 8,i ) each having angular direction o1ij- The area, AA , covered

by one solid angle of trajectories is in general one of irregular shape.
The area AAg is computed by representing this area as a rectangle
whose sides are determined from the averages of (p1i s eli)’

Thus,

AAg (z ,%) = (pz) (AX) , (32)
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where

z= s*P; cos g, x =75 B sin g
i=1
4 and 7 (33)
and
bz =7 l2-37) B% =5 i% - %
ALt 2L o

Additionally each trajectory has a direction O; at the screen
intersection as shown in Figure 19, These angles must use the XY Z
axes and not the X’ Y’ Z’ axes, since the effect of rotating the source

is achieved by rotating the axes instead. Thus,

i =1sin ¢,j cos B,4j + j cos oyi + k sin o,j cos 8,xi,

or

gi:ivxi’LlVyi'*’li Vzir
and

AQ = sin oy Aoy A8,y s (35)
where 54 i

a _ i= 1

! 4

(36)
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and

v | 8zxi - -e-zx |
zX 2

The particle intensity crossing the area AAg having direction 0 and

falling within the solid angle AQ is AS.

The angular flux &(r, 0) AQis thus

AS
AAg cos @,

&(r, 0 aQ = (37)

Equation 37 can now be evaluated using eqs. 13, 32, and 35, and this
is achieved by the second part of the computer program using the

punched cards generated by the first phase of the program.

In evaluating eq. 13, it is necessary to define a AA. Theoretically
the data should be taken for a large number of § and ¢ values to obtain
a simulated source distribution covering the spherical surface at .
Small increments of § can be obtained by moving the gun over a
distance po A 8, and small increments of ¢ obtained by moving a
distance po sin 65 A . The increments should be chosen so that the
change in angular flux about the point dipole is relatively small. By
this procedure the distribution of angular flux is representative of the
source at all points on AA. In this experiment only two screen positions
are used and they are separated by a A6y = 45°. The selection of
Ao = 45° is arbitrary and both Ag, and A #o values are too large, and
this is discussed further in the conclusion section. It should also be
noticed that by changing the gun position from 85 = 90° to 8, = 45°, the
screen is rotated rather than the gun being repositioned within the tank
for obvious reasons. Utilizing screen rotation rather than changing
gun position to obtain a complete flux distribution is also discussed in

the conclusion.
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It is convenient to establish a reference square grid, as shown
in Figure 20, for defining areas about the point dipole in which the
angular flux can be recorded and summed and the results compared
with the calculations of Prescott et al, A grid has been chosen for
this task. Each square is 0. 025 in Stormer units on a side and there
is a total of 100 by 100 squares. Since Cst = 21.73 ¢m, each square is
0.543 cm by 0. 543 ¢cm and the total area covered by the square is 54. 3
cm by 54. 3 cm. The screen itself is 61 cm square with the point dipole
placed at its center. The dipole has a radius equal to 3 in. or 14.0

squares as shown in Figure 20,

It is the purpose of the program to compute the angular flux
crossing these unit squares. Consequently each square is assigned a

number (M, N) where

M = 0035 + 51 (38)
and
~ Z
N = 0. 025t 51 . (39)

AtX =7 = - 1.25, M = N =1, defining the first square. FEach computation
involves the four trajectories of the solid angle AQg or AQ, for which

X and Z are determined using eq. 33. The sign of Xor Z is determined

by giving 8, plus and minus values so as to conform with eqs. 38 and 39

as shown in Figure 20. That is, 8 is minus on the side toward the gun.

The angular flux computed by eq. 37 covers one or more squares
either completely or partially. The contribution of the flux to any square

is at most the value of the flux, ¢M,N X, Z, 0) A Q. by definition,
and this occurs only when the square is completely contained within
AAg. When the flux covers only a fraction, f, of the square, contribu-

tion to this square, then the flux &\ N OO is

dyn A0 = &(X, Z, Q) AQ | (40)
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Equation 40 is evaluated by the second phase of the computer
program using punched cards from the first phase as input data. The
punched data are the trajectory number, gun angles, p1 » 815 COS gy,

8, 'y’ , and 8,,. With each source radiation solid angle, Aﬂg. there

is a corresponding area, AA, which the radiation covers on the screen
as shown schematically in Figure 19. The second phase of the computer
program determines the angular flux for each solid angle A Qg » the

squares contained within AA_, the fraction of area covered for each

5?
MN square, and evaluates equation (40) for ‘I’MN(rl nldqa. The data
utilize a sequence of connected solid angles so that after the first

four trajectories are determined, only two additional trajectories are
needed to form each succeeding solid angle, AQg- This continues

until further motion of the gun in this region of the eg g plane no longer
involve trajectories that score the screen ending the sequence of

connected solid angles. Then another set of such data must be considered.
After each set of trajectories, which involve a connected sequence of

solid angles, has been evaluated, the computer program prints out a
convenient format, (1) the &y (r, Q) dQ corresponding to each solid

angle AQg in one table, (2) the ¢y (r, Q) dQ summed over each set of
data in another listing, and (3) the values of the average gun angle

» BQgs &(r, Q) AQ, EM, EN,

AQ, and the trajectory number associated with each solid angle AQ

in the third table. Here EM and EN are the fractioned values of X and

(8g and 3y), A4S, X, Z, 8K, 02,0y, 8,y

Z as determined by eqs. 38 and 39 respectively. The trajectory number
printed out is the first of each pair of trajectories. There is an L
nurber for the first four and an additional one for every succeeding two

trajectories until the end of the sequence.

Calculation of the angular flux is the last phase of the analysis of
the MAGSIM data. This last phase continued to utilize the selected
trajectories previously presented in this report but now restricted to
those enclosed within the solid lines as outlined in Figures 14 and 15.

It can be observed that these data comprise two large and one small
solid angle of radiation for the 6§ = 45° case. The radiation correspond-

ing to these solid angles illuminates defined areas on the screen as
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depicted graphically in Figure 20. The areas, AAg, outlined in
Figure 20 are those determined by the second phase of the computer
program. The trajectories corresponding to each AAg are also
listed within or adjacent to its area in Figure 20. The cross-hatched
areas refer to the § = 90° configuration. The parameters computed
for these trajectories in this phase of the analysis are listed in

Table 6 where each connected sequence of solid angles is separated
by a space from the others. We have listed in this table the average
gun angles _e—g and Eg used to define the direction Qg and necessary in
determining AQyg- It is easy to reference these sets of trajectories

in Figures 14 and 15. The source, AS, is essentially the same for

all solid angles since this is a result of the experimental procedure.
It can be noticed that all of the X's are on the side of the screen
toward the gun where the meridian plane vector is up out of the paper.
Thus if ;1 is less than 90°, the trajectories are moving upward
through the screen, otherwise they are moving down through the screen.
The two areas above and below the dipole are moving down through
the screen whereas the region to the left of Figure 20 are moving
upwards. The magnitude of AX and pAZ give the sides of AA in
Stormer units and 0. 025 is equivalent to one square of the grid. In
one case L = 972, the AX = 0. 006 which is a very small region produc-
ing a high concentration of flux in that region. The flux appears to

be focused at the screen, but this is not necessarily the case. The
quantitative value of AS proportional to A A for which it is assumed
that all of the flux in direction Q—g and in AQg on this area intersect

at AAg. This is clearly not the case here. To obtain a more precise
correlation requires integrating the flux passing through AAg when
the gun is moved through both small values of A8y and Ay to define

LA correctly.

It is interesting to compare the relative magnitudes of & AQ
listed in Table 6. Some directions of the gun will place orders of
magnitude greater radiation on the screen even with a small change
in solid angle as denoted by L's 972 and 981, In general, one should

expect that the beam will become highly divergent at the screen for
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those gun angles which fall on the periphery of the enclosed regions

of Figures 15 and 16. In the last two columns, EM and EN, the x and

z positions are given in fractional values of M and N which are reserved
for the whole numbers used to identify the location of the unit areas

in the grid of Figure 20,

The flux & (r) as defined by Prescott et al is proportional to
®MNAQ. A direct comparison between theory and experiment requires
integrating the experimental data over a small AA as explained earlier.
Once this is accomplished, the procedure in this report gives & (r)/ &(=)
directly. That is,

T eMNAQ = &(r)/ & ().

However, the theoretical calculation assumes an infinitesimal point
dipole that does not interfere with the trajectories. Thus the experiment
could provide a measure of the shadow effect produced by the 6-in. -

diameter point dipole.

The curves depicting &(r)/ & () = 0 and = 1 from Prescott et al
are given in Figure 20. The intensities of the flux ¢y A have been
computed for the data shown in Figure 20 where the values are summed
over all of the trajectory data employed in the analysis. Even these
areas cover such a large number of MN areas that it is not convenient
to list them all in this report. Consequently only a partial listing of
these data are given in Table 7; however, the data are selected to be
representative of the total ensemble. In general, the flux intensity
produced when the dipole is oriented at § = 90° produces more ihtense

radiation at the screen than does that from the 8§ = 45° configuration,
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(M, N)
1, 41
1,42
1,43
1, 44
1,45
1, 46
1, 47

2,48
2,49
2,50
2,51
2,52

3,41

3,42
3,43

O O O O O o ©

o O O o ©

&N AD
. 2333E-01
.1007E-00
.1007E-00
.1007E-00

.1038E-00
. 2040E-00
.2040E-00

. 2040E-00
.1552E-00
.1033E-00

.1033E-00

. 4195E-01

0. 2333E-01
0.1007E-00
0.1007E-00

O O O O O O O O O O O

j=]

. 3218E-01

. 2289E-01
. 4432E-01

. 4432E-01

. 4432E-01
. 4432E-01

. 4432E-01
. 4432E-01

. 4432E-01

. 4432E-01

. 3218E-01

. 2289E-01
. 4432E-01

TABLE 7.

(M, N)
9, 58
10, 55
10, 56
10, 57
10, 58
11, 69
11,70

12, 54
12, 55
12,56
14,68
14,69
14,70
14,71
14,72

20, 65
20, 66
20,67
20,68
20, 69
20, 70

51, 77
51,78
51, 79
51, 80
52, 74
52,75

3,48

LISTING OF &y AR

o O O O O O O o o o o

S O O ©O O O

o O O © O ©

LY
0.
0.
0.
0.
.1463E-00
. 9096E-01
. 7393E-01

7192E-01
6589E-01
8879E-01
1102E-00

. 9383E-01
.1037E-00
.1266E-00
.1067E-00
.1067E-00
.1016E-00
. 5924E-01
.1156E-01

.1012E-00
. 3146E-01
. 3146E-01
. 3146E-01
. 3146E-01
. 3146E-01

.1302E-00

1302E-00

.1302E-00
. 5511E-01
. 3176E-02
. 4646E-02

. 2040E-00
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4, 41
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©C O O O O O O O 0O O O O O 0O O o o o

O O O O O O O ©
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CONCLUSIONS

The MAGSIM has now been modified to meausre with useful
accuracy trajectory parameters associated with the motion of a
charged particle in a magnetic field. Although a technique has been
effected for experimentally determining the angular or vector flux
distribution about the point dipole, the system can be used to obtain
other interesting trajectory information. The patterns displayed in
Figures 12 and 13, showing the angular directions of the gun for which
trajectories score the screen, can be useful in several ways., First
the earth is a near point dipole magnet so that work performed on this
contract is relevant to high energy charged particles penetrating the
earth's magnetic field. It may be desirable to study incident directions
of charged particles in real space that come close to the earth. The
region about the earth can be defined by the screen and the screen does
not need to be square, it can take on any shape desired; a circle,
annular ring, etc., to define the region of interest near the earth or
magnet. In this regard, certain annular regions about the earth might
be important for future manned earth orbiting stations. Thus studies
of this type relate allowed directions for charged particle intersecting
the screen to defined regions in space. Such data can also be used in
support of trajectory calculations in that they define those trajectories
which pass close to the earth or magnet and eliminates the need for
performing any calculations to determine the important or relevant

trajectories.

When more quantitative data are desired, Figures 15 and 16 can
be very useful. In these sets of figures the gun's angular direction for
a particular point in space is directly related to the vector flux and
the solid angle AQ at the screen. It should be repeated, however, that

the quantitative value of the vector flux & N AQ is proportional to AA.

M
The values reported in Table 7 are based on Ag¢, = A% = 45°%, Reducing
these to increments 1° will reduce the magnitude of the flux by(;ll?) .

Consequently, it will be necessary to take such data for several (R, 85,

®o) positions of the gun about the area so that an integration can be
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made over a small area AA. This will require moving the gun in
increments sufficiently small to produce a reasonable change in the
angular flux distribution about the point dipole. For each position

(po, 80 ¢o) of the gun, a flux distribution is produced in the MN plane
of Figure 19. By systematically taking data in the required increments
to cover the full spherical surface at P,, a pattern of the flux intensity,
MmN AQ, will be generated in the MN plane that can be compared with
results predicted by Prescott et al. In this case, however, the shadow
effect of the magnet will cause the @MN(r, Q1) AQ pattern to be different.
In fact, such data can be used to study the shadow effect directly. It is
not necessary to take data covering all source positions on the surface
for a cylindrically symmetric magnet like the point dipole. Data taken
in one quadrant can be used to derive the data corresponding to
symmetrical positions in the other three quadrants when integrating
over the ¢ direction; however, changes in 8 must be made to cover

the full 2 ¢ range.

From the limited data obtained in this experiment, there exists
a very large variation in flux divergence at a point on the screen,
depending on where the trajectory originates from in space and its
initial direction. In some cases a particular gun direction will produce
a relatively concentrated beam at the screen. In view of the constraint
&(r)/¢ (=) <1, it is believed that the sources of flux at a particular
point near the screen come principally from a few selected points and
directions in space. The remaining flux comes from numerous points
in space that produce a highly diffuse beam to cover the area. This
would be in agreement with other work” performed on the MAGSIM where
it was observed that the cylindrically symmetric flux exhibiting a 60°
loss cone (Van Allen Belt radiation) produces a forbidden volume at

the center of a circular loop magnet.

For the experimental setup used here, movement of the gun
about the dipole is highly limited. It is far more convenient to rotate
the screen to achieve the same effect; however, because of the fixed
camera position, the data reduction is made more complex.

Nevertheless, it is possible to achieve a reasonable cove‘rage by this
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manner. First, the screen should be rotated about the Y axis of
Figure 19 to simulate moving the source through § similar to that
performed in this study. Once a quadrant is covered, then it would be
necessary to tilt the screen so that the Y axis now makes an angle ¢
with the former axis Y’. By rotating the screen about the Y’ axis,
the effect of moving the screen through the angle 8 in A8 increments
for the new ¢ position can be simulated. This procedure becomes less
accurate the larger ¢, if the two cameras remain fixed as they must
in the present system. By this means, a complete simulation of flux

in space can in principle be achieved with the present system.

The data obtained in this experiment are self-confistent for the
8 = 90° position for almost all trajectories including those that score
the screen more than once. For the 8 = 45° data there were a
sufficient number of discrepancies between the directly measured
values of Q, = Vy and the corresponding values computed based on a
constant ¢ that a preliminary study of the errors associated
with these measurements has been performed. The trajectories chosen
for this preliminary error analysis are given in Table 8 together with
other pertinent parameters. They are listed in a sequence convenient

for this analysis.

Before proceeding with this discussion, it should be remembered
that the vy is determined from the trajectory at the point of the screen,
whereas the cos o, is computed from the gun angles and P, and & . In
the latter case, should the trajectory pass through regions where the
magnetic field is slightly different from that of a point dipole, it will
cross the screen at an angle different from what point dipole theory
would predict. The net result will be to produce a difference between
the two answers for Q,. Such non-dipole behavior can occur at large
distances from the point dipole where its field is weak. This particular
experiment is quite susceptible to such effects since the vacuum tank's
walls are constructed of steel. Such effects will occur prior to the
trajectory moving toward the screen and will probably have the effect

of simulating the different vy or gg . It is not expected, hqwever, that
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such trajectories will occur that approach the completely forbidden
volume. Past experiments on measuring completely forbidden volumes

have provided accurate results.

For the first case, consider trajectories 1441 and 1442. Here

the initial discrepancy was traced to an error in the data. As

explained in the appendix, the GY’X’
trajectory is in the opposite direction of the meridian plane vector.

carries a minus sign if the

The minus sign was accidentally not included for trajectory 1441.
Changing the sign of 1441's 8’ ' gives vy = - 0.4373 and = 115. 9°
which are consistent with corresponding results for 1442, although
in the opposite direction of that predicted by cos ;. The positive

X axis is toward the gun so that the meridian plane vector is upwards
on this side and downwards on the other side. Consequently the 1440
and 1441 trajectories are observed to be going up through and almost
parallel to the screen. The predicted values are also moving nearly
parallel to the screen, but in the downward direction, so that the

difference between the angles ¢, and ¢, for the two trajectories are

not very great.

The trajectories 144l and 1442 fall into a similar class with
the trajectories 1658, 1703, 1657, 1704, 1675, 1696, 1676, and 1697
where the 3 values are very small and are thus sensitive to either
real or apparent errors in Gg. This tends to explain the larger
differences exhibited between ¢, and g, for these trajectories and
indicates that the steel chamber wall is perturbing their motion. It
should be noted that the above eight trajectories are in reality only
four since half are repeats. The data are consistent within trajectory
pairs and provide an estimate of the precision of the meéasurements,
Although the data repeat as shown, the larger differences do occur
for the very small values of y, Since the oy is determined from
direct measurements of the velocity vector, it is used in computing

the solid angle AQ at the screen.

Another effect that can introduce errors in ¢, concerns the

construction of v from the vector components. W'hen,ey.’x’l = 90°
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the trajectory is moving in a near line of sight with the side
camera (View 2). Thus, tan ey'x' -+ o and introduces large errors.
This may partly explain the y, and g, differences for trajectories
1675 and 1696.

Except for the last two trajectories, the large value of ;/ give
excellent results between the two methods as can be seen by reviewing
all of the data. In these two cases, the Q, is very sensitive to P,
or 0,2. Another calculation was made where r, was increased by
1 cm (P, increased by 0. 005 Stormer Units). This kind of error can
occur in some cases when the electron beam is concentrated so that
the major portion passes through the grid with only the edge of the
beam striking the wires. The results of this calculation is shown
in Table 9, where better agreement occurs for trajectories 1607,

1616, 1617, and 1618, but not necessarily for the others; however,

only 1616 and 1617 appear to be very sensitive to an error in P,.

The techniques evolved through this study can be extremely
useful not only in active shield studies for future spanned spacecraft,
but also for determining charge particle motion in the earth's
magnetic field. For future extensive studies on trajectories as
performed in this program, it is recommended that a new MAGSIM
be constructed, designed specifically for this purpose. The system
should incorporate a non magnetic vacuum chamber and have
provision for moving the gun about the magnet. Flexibility in camera
positions are also required. The method for taking data and perform-
ing data analysis can be automated to a higher degree than has been
accomplished here. By these means a system could be achieved for
obtaining trajectory data of charged particle motion in a magnetic
field more expediently and economically than can be attained by any
other method. Modified point dipoles could be used to more closely
simulate the earth's magnetic field to achieve greater accuracy here.
Finally, the system can be used to study the integrity of any active
shield and should be especially useful where materials are also to be

incorporated into the protective design.
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TABLE 9. TRAJECTORY PARAMETERS WHERE R, HAS
BEEN INCREASED 1 CENTIMETER

L 4 o7} p1 8,

*1441 87.8 115.9 0.925 -10.0
1442 86.2 108.1 1.077 -20.0
1658 49.2 164.3 0,732 -1.0
1703 48.8 173.9 0.727 -1.0
1675 131.6 147.3 0.658 -5
1704 118.6 146.3 0.663 -6
1675 66.0 12,6 0.755 1
1696 39.0 12.9 0.755 0
1676 128.9 179.6 0.681 -5
1697 130.6 180.0 0,677 -5
1605 64.0 76.1 0.985 -56.4
1606 51.3 67.0 0.870 -59.9
1607 39.8 56.0 0.801 -63.0
1616 59.3 69.9 0.884 -51.8
1617 32.6 60.4 0.736 -54,5
1618 22,0 47.9 0.709 -57.1

* Corrected (uses ey' = - 26.6)
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APPENDIX

A computer program has been written in FORTRAN-4 language
to support the data reduction and analysis. The program consists
of two parts. The first part is used to compare values of Q,
determined by two separate methods in accessing the accuracy and
consistency of the data, and the second part computes the angular flux
and other pertinent trajectory parameters. Although a right-handed
coordinate system about the point dipole is employed in the data
analysis, there remains some flexibility in relating the data calculated
in the first part to that in the second part. This is the case with §,
where this angle is measured to be positive on the side of the axis
away from the gun along the negative X axis., By such means, the
calculation of the M and N grid is consistent with the top view of the
grid. It was also necessary to relate the angle between the meridian
plane vector and the velocity vector when deriving the velocity
vector from the photographed vector components. The nomenclature
used here was to prefix 8 with a minus sign when the vector is greater
than 90°. The programs are presented in precise format, each line
representing one IBM card. The definition of symbols used in the

computer program and their equivalent in the text are as follows:

L = trajectory number

H = voltage reading for gun angle corresponding to d"g

A% = voltage reading for gun angle corresponding to eg

PH = dg = gUN angle in horizontal plane

A Sg = gun angle in vertical plane

G = % = constant of motion

THI1 = 8, = cylindrical coordinate of trajectory in screen grid

R1 = r, = cylindrical coordinate of trajectory in screen grid

Al = o, = angle trajectory makes with meridian plane
vector at screen

TH3 = BZ’X' = angle of velocity vector component in axes

parallel to camera's view
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TH4

THS

TH6

PHA
DQ
ZA
XA
DZA
DXA
A A
TH6A
oMl

oM
DTH
DPHO
cuU
FL

1l

1l

Gy'x' = angle of velocity vector component
in axes parallel to camera's view

ez’y' = angle of velocity vector component
in axes parallel to camera's view

8, = angle of velocity vector component
in axes aligned with dipole axis

COs g, = same as COS g, except computed from
velocity vector components

oa = cos™t VY

o' = uncorrected gun angle g

R! = uncorrected gun angle eg

vy calculated from Vy

o calculated from Gl
P, = distance between point dipole and gun in S. U.

O, calculated from Gl

8 2x
oy =

= velocity vector angle in dipole coordinate axis
r, is S.U.

Ao = angle between dipole axis and AA’ of Fig
Average value of eg in Aog
Average value of by = AQg

AS = source intensity from area AA
Average value of @ cos 8,

Average value of p sin 8,

AZ of area AAg on screen

AX of area AAs on screen

Average value of o, in AQ

Average value of 8, in AQ

X

AQ = solid angle of flux irradiating screen

AQg = solid angle of source radiation AS

A 8, = angle increment defining AA

A ¢y, = angle increment defining AA

&(r, ) AQ = angular flux

® N AQ = angular flux covering the MN square

fraction of MN area covered by radiation from

source A S.
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